
ERDC MSRC/PET TR/00-27

Portals for Web Based Education and Computational Science

by

Geoffrey C. Fox

30 May 2000

07h0082000

1

Portals for Web Based Education and Computational
Science

Geoffrey C Fox
School for Computational Science and Information Technology

And Department of Computer Science
Florida State University
Dirac Science Library

Tallahassee Florida 32306-4130
gcf@cs.fsu.edu

Abstract

We discuss the characteristics of portals defined as web-based interfaces to applications. In
particular we focus on portals for either education or computing which we assume will be based
on technologies developed for areas such as e-commerce and the large Enterprise Information
Portal market. Interoperable portals should be based on interface standards, which are essentially
hierarchical frameworks in the Java approach but are probably best defined in XML. We
describe the underlying multi-tier architecture, the key architecture features of portals and give
detailed descriptions for some computational science portals or problem solving environments.
We suggest that one needs to introduce two object interfaces – termed resourceML and portal in
XML. We show how this fits with recent education standards and describe web-based education
in terms of collaborative portals.

1 Introduction
Portals have attracted a lot of attention recently – some of this is good but for many people
portals are just a fad. We believe that viewed as “Application-specific Object Web based
distributed systems”, they are very valuable and will see growing use. Here we mainly focus on
computing portals [8] but make some remarks on the design of new education and training
portals. In section 2, we give some background on the Object Web and multi-tier distributed
information systems. We introduce two critical interfaces, which define the objects themselves
(resourceML) and the user view of them (portalML). Section 3 shows how to customize the
general web technology for portals with basic services that cross application areas. Section 4
makes general remarks about the functionality and architecture of computing portals in three
different application areas: mesh generation, space data analysis and earthquake science. In the
next section, we go through some of the computing portals we have built at Syracuse. The final
section focuses on education portals with some special attention to collaboration as a service.

2

2 Technology Background
2. 1 Multi-Tier Architectures

Fig. 1: 3-Tier Computing Model illustrated by Basic Web Access

Modern information systems are built with a multi-tier architecture [13] that generalizes the
traditional client-server to become a client-broker-service model. [13,14] This is seen in its
simplest realization with the classic web access of fig. 1, which involves 3 tiers – the browser
runs on a client; the middle-tier is a Web server; the final tier or backend is the file system
containing the Web page. One could combine the Web server and file system into a single entity
and return to the client-server model. However the 3-tier view is better as it also captures the
increasingly common cases where the Web Server does not access a file system but rather the
Web Page is generated dynamically from a backend database or from a computer program
invoked by a CGI script. More generally the middle tier can act as an intermediary or broker that
allows many clients to share and chose between many different backend resources.

Fig.2: 3 Tier architecture supporting multiple persistent object models

This is illustrated in figs. 2 and 3, which shows the 3-tier architecture with the two interfaces
separating the layers. As we will discuss later the specific needs and resources of a portal will be
expressed by metadata at these interfaces using XML technology.

3

Fig. 3: General Three Tier Architecture showing portalML Interface (“Request for Service”)

and resourceML (“Resource Interface”)

This 3-tier architecture (often generalized to a multi-tier system with several server layers)
captures several information systems which generalize the access to a web page in fig. 1 and the
invocation of a computer program from a Web or other client in fig. 4.

Fig. 4: Simple Simulation formulated as a “distributed computational object”

The architecture builds on modern distributed object technology and this approach underlies the
“Object Web” approach to building distributed systems. Let us describe this in the context of
some familiar computing concepts.

4

2.2 Clients, Servers and Objects

A server is a free standing computer program that is typically multi-user and in its most
simplistic definition, accepts one or more inputs and produces one or more outputs. This
capability could be implemented completely by software on the server machine or require access
to one or more (super)computers, databases or other information resources such (seismic)
instruments. A client is typically single-user and provides the interface for user input and output.
In a distributed system, multiple servers and clients, which are in general geographically
distributed, are linked together. The clients and servers communicate with messages for which
there are several different standard formats. Events are a special type of message typically with a
time stamp and representing some state change. An (electronic) object is essentially any artifact
in our computer system. As shown in fig. 4, a computer program is one form of object while the
best known distributed object is a web page. Fig. 2 illustrates database, XML and general object
models.

In the example of fig. 1, a Web Server accepts HTTP request and returns a web page. HTTP is a
simple but universal protocol (i.e. format for control information) for messages specifying how
Web Clients can access a particular distributed object – the web page. Again a Database Server
accepts a SQL request and returns records selected from database. SQL defines a particular
“Request for Service” in the interface of fig. 3 but usually the messages containing these requests
use a proprietary format. New standards such as JDBC (The Java Database Connectivity) imply
a universal message format for database access with vendor dependent bridges converting
between universal and proprietary formats. An Object Broker as in fig. 4 uses the Industry
CORBA standard IIOP message protocol to control the invocation of methods of a distributed
object (e.g. run a program). IIOP and HTTP are two standard but different protocols for
communicating between distributed objects.

The Object Web signifies the merger of distributed object and web technologies, which is
implicitly embodied in the discussion so far. There are four rather distinct but important Object
standards. CORBA is the Industry Standard supporting objects in any language on any platform.
New features in CORBA tend to be deployed relatively slowly as they have a cumbersome
approval process and must satisfy complex constraints. COM is the Microsoft standard, which is
confined to PC’s but broadly deployed there and in high performance computing. Java is the
software infrastructure of the web and although single language, the same object can be used on
any computer supporting the Java VM. XML comes from the Web Consortium and will be
briefly discussed below. It can be used to define general objects in an intuitive format illustrated
in fig. 5.

The Pragmatic Object Web implies that there is no outright winner in the distributed object field
and one should mix and match approaches as needed. For instance, CORBA Objects can use
interfaces (as in fig. 3) defined in XML, with clients and servers programmed in Java, and with
rendered displays using COM.

Distributed objects are the units of information in our architecture and we need to provide certain
critical operating system services to support them. Services include general capabilities such as
“persistence” (store information unit as a disk file, in a database or otherwise), and “security” as
well as more specialized capabilities for science such as visualization [44].

5

2.3 Use of XML Extended Markup Language

We suggest using XML technology is used to specify both general and specific resources in
portals. A good overview of the use and importance of XML in science can be found in [7] and
we illustrate it below in fig. 5, which specifies a computer program used in a prototype GEM
(Earthquake) Computing Portal described later and shown in fig. 11.

Fig. 5: XML Used to describe the computational problem in the GEM computing portal

3. Portals in the Object Web
3.1 Basic Architecture

Portals have major impact in two commercially critical areas. First there are community portals
like Yahoo, Excite, and Netscape Netcenter whose impact is illustrated by the $100B or so stock
market valuation of Yahoo and AOL. Secondly there is the still growing use of the portal
concept to organize corporate information for customers and employees – an area termed
Enterprise Information Portals (EIP). These are intended to integrate all information and related
services – structured from databases, electronic mail, web pages, scanned paper – from a single
user interface. Merrill Lynch has estimated that EIP technology will generate $14B in market
revenues by 2002.

6

Portals can alternatively be looked at as a web technology implementation of a distributed
system. Portals have certain common features; for a given area (community, the αβγ corporate
EIP, the XYZ University Education Portal etc.) there are a collection of objects and services
(operations on objects) which can be accessed from the portal (web page). One can often
customize the portal functionality, choosing both, which objects to display and their parameters
(which sports team score to display or which area weather map). Similarly the look and feel of
the portal, background or index style, can be customized to get “my.portal”. Both the basic portal
objects and customization for each user must be stored persistently.

The large size of the commodity portal market suggests that one should carefully architect
portals to build on technologies and ideas from the large base markets and this strategy is
outlined in fig. 6.

Fig. 6: Hierarchy of Portals and Their Technology

Re-use of portal technology requires careful definition of interfaces in the fashion of fig. 3.
Unfortunately although the commercial world is moving with Internet time, some areas like
security and even more so collaboration are not clear and so one must inevitably develop
technology in areas that will later redone by the commercial whirlwind. Some application
features (such as quizzes and homework for education, visualization [44] and execution of jobs
for computing) are special and can be safely studied in academia. The overall object model as
described in section 2, is reasonably clear but even the area of portal authoring is still not
addressed very well commercially and here again one must develop prototype solutions and
expect commercial competition later. There are several interesting approaches to portals
including iPlanet from Sun [33], portlets from Oracle, many XML/web-linked database systems,
www.desktop.com, Ninja from UC Berkeley [40], WebSphere from IBM and e-Speak [11] from

7

Hewlett Packard. Technologies like SOAP are important [46]. These address different aspects of
portals with different architectures and none has a clearly winning or complete approach. Thus
here we will adopt a more general approach. First we focus on the implications of the 3-tier
architecture which shows that we should use two and not one interface definition. resourceML
describes the basic computing or learning object while portalML describes the user view of it.
Note that the use of two interfaces separates the user and system object view and insulates both
the user interface and repository resources from the changing server infrastructure. As a simple
example from the relational database field, resourceML would define the table structure used to
classify the data while portalML would support user queries in SQL.

Fig. 7: Portal HTML/XML Structure

We will assume that whereas most web pages will be in HTML, these are the links accessed
from portals. We can assume as shown in fig. 7, that the “control” (entry) pages of a portal can
be assumed to be in XML and that this XML will define all aspects of a portal; what objects are
in it and their possibly user customized properties. We will also assume that we will use XML to
define the layout of the page in a fashion sketched below.

8

Fig. 8:A Web Page as a Collection of Collaborative Components

Maybe layout can be specified in some XML equivalent of the Java AWT layout classes with say
a Grid layout specifying the classic multi-column structure of common portals today. This will
be one part of portalML as user view of an object does of course include its layout. We might
find something like:

<portal name=“” ><columns=3/><portalobject mode=“forced” source=“”><placeat
layout=“flow1” position=“1” > … ...

portalML would control placement of component objects on pages and specification of their
parameters and location. So we might find

<portalparameter name=”city” value =”Manchester” /><portalparameter name=”sensor”
value =”radar” />.

portalML will allow specification of your favorite nifty JavaScript or Java index and rendering
preferences such as resolutions and “universal access”, borders, backgrounds etc.

Portal building tools will exist for developers (architect template for portal i.e. differentiate
my.petpage from my.Netscape) and users (specialize portal template). Such general standard
based portal approaches will be serious competition for specialized portal systems such as
WebCT for education.

The portal authoring tools will perhaps be designed like traditional PC desktop and application
customization tools. Capabilities are organized hierarchically as toolbars and the user will have a
GUI to allow the dragging of chosen components onto the portal page. Computing toolbars
would include user profile, application area (here user would certainly customize), code choice
(application specific), results, visualization (where “command” could be AVS), collaboration,

9

programming model, (HPF, Dataflow specialized tools), resource specification, resource status
etc. The same authoring tool would support commodity, computing and education “toolbars”.
Thus a university student could produce a single personal portal supporting his personal whims,
university education and computational science research by choosing components from multiple
toolbars.

4: Architecture of Computing Portals

Fig. 9: A Portal for Mesh Generation

A Computing Portal – or equivalently a web-based Problem Solving Environment or PSE is an
application that integrates access to the data, computers and tools needed for a particular
computational science area (Computing Portals, web). It must exhibit several services including
security, fault tolerance, object lookup and registration, object persistence and database support
(as in EIP’s), event and transaction services, job status (as in HotPage from NPACI and myGrid
from NCSA), file services (as in NPACI Storage Resource Broker, support for computational
science specific metadata like MathML and XSIL, visualization, application integration
(chaining services viewed as backend compute filters), “seamless access” and integration of
resources between different users/application domains, parameter specification service (get data
from Web form into Fortran program wrapped as backend object), and finally collaboration. We
illustrate in figs. 9 through 11 the functional architecture of conceptual portals in three areas –
mesh generation, space data analysis and earthquake science [14].

10

Fig. 10: SMOP or Space Mission Operations Portal

In fig. 9, one emphasizes collaboration with experts as mesh generation is still hard to automate
and we assume that a distributed center will support this function that underlies solution of
partial differential equations from essentially any field. We have the same interfaces already
introduced in fig. 3 in all portals. In fig. 10, we indicate the importance of multiple user
interfaces as space missions will not wait and interaction with users can be needed at any time.
Further we try to isolate access to the Space Internet as one service but otherwise use
infrastructure (databases, compute servers) from less esoteric applications. Let us focus on the
last case GEM (General Earthquake Model) which is a portal supporting all aspects of
earthquake science from real time interaction with data from the “big one” to decade long
theoretical studies of the underlying nonlinear systems [14]. Most of the features of GEM (which
we have studied quite deeply) translate to other areas such as those of fig. 9 and 10.

In GEM, everything is a “distributed object” whether it be a simulation on a supercomputer; the
basic GEM Web pages; the notes from a field trip entered on a palm top; CNN real-time
coverage of the latest earthquake or the data streaming in from sensors. GEM provides an
integrated view of these diverse resources with XML definitions for the raw objects themselves
and the data they produce. The services shown in fig. 11, from collaboration, security, object
discovery, visualization and computer access, are generic to all computing portals.

11

Fig. 11: 3 Tier Architecture of a GEM Computing Portal

Building GEM using the same approach and tools as other portals ensures the availability of
these services. They will require customization as for instance there are many different
visualization packages and each requires non trivial work to include in such a portal. Again
collaboration corresponds to sharing distributed objects, and as discussed in section 3, this can
currently only be automated for some objects. Many web pages can be shared using generic
techniques illustrated in fig. 5 but sharing say the control and output of a general simulation can
require quite a lot of custom modifications.

One needs to define the entities in the GEM environment as distributed objects and for computer
programs this implies a rather arcane process termed “wrapping the program as a distributed
object”. Operationally this implies allowing a middle-tier server (the CORBA object broker or
Java Application Server) to be able to run the program on one or more machines, specify the
input files and either specify output files or access them as streams of data in the fashion of
UNIX pipes. Our strategy is to define all relevant properties of computer programs in XML as
illustrated in fig. 5. These properties are used to generate either statically or dynamically the
needed object wrappers. This approach requires the user specify what they know – the properties
of their program, while the filter copes with the obscure syntax of each object model. Obviously
this also allows one to support all object models – COM, CORBA, Java – by changing the filter
and so one can adapt to changes in the commercial infrastructure used in the middle tier.

One must apply the XML object definition strategy to all entities in GEM; programs, instruments
and other data sources and repositories. This gives the metadata defining macroscopically the
object structure. However equally usefully, one needs to look at the data stored in, produced by
or exchanged between these objects. This data is itself a typically a stream of objects – each an
array, a table or more complex data structure. One could choose to treat the data at some level as

12

an unspecified (binary) “blob” with XML defining the overall structure but detailed input and
output filters used for the data blobs. As an example, consider the approach that an electronic
news organization could take for their data. The text of news flashes would be defined in XML
but the high volume multimedia data (JPEG images and MPEG movies) would be stored in
binary fashion with XML used to specify <IMAGEOBJECT> or <MOVIEOBJECT> metadata.
Systematic use of XML allows use of a growing number of tools to search, manipulate, store
persistently and render the information. It facilitates the linkage of general and specific tools/data
sources/programs with clearly defined interfaces. This will help the distributed computing portal
users to separately develop programs or generate data, which will be easily able to interoperate.
More generally as shown in fig. 6, XML standards will be defined hierarchically starting with
distributed information systems, then general scientific computing and finally application
specific object specifications. For example GEM would develop its own syntax for seismic data
sensors but could build on general frameworks like the XSIL scientific data framework
developed at Caltech [51]. XSIL supports natural scientific data structures like arrays and the
necessary multi-level storage specification. Another example is MathML which provides XML
support for the display and formulation of mathematics. We can expect MathML to be supported
by tools like Web Browsers and white boards in collaborative scientific notebooks and allow one
to enhance theoretical collaboration in GEM. There will for instance be modules that can be
inserted into applications for parsing MathML or providing graphical user specification of
mathematical formulae. [23] One can also use MathML in high level tools allowing specification
of basic differential equations that are translated into numerical code. This has been
demonstrated in prototype problem solving environments like PDELab but have so far not had
much practical application [29]. Greater availability of standards like MathML should eventually
allow more powerful interchangeable tools of this type. Finally we can mention a set of graphical
XML standards such as X3D (3 dimensional objects) SVG and VML which are vector graphics
standards, which can be expected to be important as basis of application specific plot and
drawing systems.

5 Building Computing Portals

 Here we discuss some existing experience from my research in integrating such objects and
tools that manipulate them into an overall environment. The Syracuse team led by Tom Haupt
[2] has built several exemplar computing portals for both the NSF and DoD HPCMP (High
Performance Computing Modernization Program) Major Shared Resource Centers. In fig. 12, we
show some useful tools including a first cut at a “wizard” that helps produce the distributed
object wrappers described in section 4.

13

Fig. 12: This illustrates several components of the WebFlow system from Syracuse.
(Counter-clockwise from bottom-left): The Server Configuration and Master Server
Administrator are WebFlow administrative tools that allow one to configure and monitor
the middle tier servers. AAD manager (Abstract Application Descriptor) is a tool to
incorporate new applications to the system: the interface shown simplifies creation of an
XML definition of the application. This definition can be used for dynamical creation of
front-end application interfaces (window "Run Application").

This AAD (Abstract Application Descriptor) can be extended to allow specification of all needed
input parameters of an application, with an automatic generation of input forms respecting
default values and allowed value ranges. The object wrappers of an application should not only
invoke the code and allow parameter specification but have built in description/help systems.

One major Syracuse Computing Portal was built for the Landscape Management System (LMS)
project at the U.S. Army Engineer Research and Development Center (ERDC) Major Shared
Resource Center (MSRC) at Vicksburg, MS, under the DoD HPC Modernization Program,
Programming Environment and Training (PET). The application can be idealized as follows.

A decision maker (the end user of the system) wants to evaluate changes in vegetation in some
geographical region over a long time period caused by some short term disturbances such as a
fire or human’s activities. One of the critical parameters of the vegetation model is soil condition
at the time of the disturbance. This in turn is dominated by rainfall that possibly occurs at that
time. Consequently as shown in fig. 13, the implementation of this project requires:

14

Fig. 13: 3 Tier Architecture of DoD “Land Management” Application whose front end is shown
in fig. 14

• Data retrieval from remote sources including DEM (data elevation models) data, land use
maps, soil textures, dominating flora species, and their growing characteristics, to name a
few. The data are available from many different sources, for example from public services
such as USGS web servers, or from proprietary databases. The data come in different
formats, and with different spatial resolutions.

• Data preprocessing to prune and convert the raw data to a format expected by the simulation
software. This preprocessing is performed interactively using WMS (Watershed Modeling
System) package.

• Execution of two simulation programs: EDYS for vegetation simulation including the
disturbances and CASC2D for watershed simulations during rainfalls. The latter results in
generating maps of the soil condition after the rainfall. The initial conditions for CASC2D
are set by EDYS just before the rainfall event, and the output of CASC2D after the event is
used to update parameters of EDYS and the data transfer between the two codes had to be
performed several times during one simulation. EDYS is not CPU demanding, and it is
implemented only for Windows95/98/NT systems. On the other hand, CASC2D is very
computationally intensive and typically is run on powerful backend supercomputer systems.

• Visualization of the results of the simulation. Again, WMS is used for this purpose.

One requirement of this project was to demonstrate the feasibility of implementing a system that
would allow launching and controlling the complete simulation from a networked laptop. We
successfully implemented it using WebFlow middle-tier servers with WMS and EDYS

15

encapsulated as WebFlow modules running locally on the laptop and CASC2D executed by
WebFlow on remote hosts. Further the applications involved showed a typical mix of
supercomputer and computationally less demanding personal computer codes. LMS was
originally built using specialized Java Servers but these are now being replaced by commercial
CORBA object brokers but in either case the architecture of fig. 13 is consistent with the general
structure of fig. 3.

For this project we developed a custom front-end shown in fig. 14, that allows the user to
interactively select the region of interest by drawing a rectangle on a map. Then one could select
the data type to be retrieved, launch WMS to preprocess the data and make visualizations, and
finally launch the simulation with CASC2D running on a host of choice.

Fig. 14: Example of a Web Interface for a “Land Management Problem Solving Environment”
built by Syracuse for the Department of Defense ERDC in Vicksburg, Ms.

Our use of XML standards at the two interfaces in fig. 3, allows us to change the front end and
middle-tier independently. This allowed us the middle tier upgrade described above which will
bring security and “seamless access” capability to our computing portals.

16

Fig. 15: Architecture of Current Syracuse WebFlow-based Computing portals

Seamless access is an important service, which is aimed at allowing applications to be run on an
arbitrary appropriate backend. Most users wish their job to just run and usually do not mind what
machine is used. Such seamless capability is rather natural in the architecture of figs. 3 and 15.
Essentially the front end defines the “abstract” job passing its XML specification to a middle-tier
server. This acts as a broker and instantiates the abstract job on one of the available backend
computers. The middle-tier backend XML interface is used to specify both the available
machines sent to the servers and the “instantiated job” sent from the servers. We build the back
end mapping of jobs to machine using the important Globus technology [24]. Globus is a
distributed or meta-computing toolkit providing important services such as resource look-up,
security, message passing etc.

17

Fig. 16: Fragment of WebFlow Composition Tool linking modules in a Quantum Simulation

(Chemistry) application

One can view WebFlow as a “kit” of services, which can be used in different ways in different
applications. In fig. 16, we show another capability of WebFlow, which supports the ability to
compose complex problems by linking different applications together with data flowing between
different modules chosen from a palette. This WebFlow service is supported by a Java front end
and a middle tier service matching abstract modules to back end computers and supporting the
piping of data between the modules. The space data portal of fig. 10 could use WebFlow like
services to concatenate various filters needed in data analysis applications.

6 Education and Training Portals

6.1 Overall Framework

We are working with the NCSA Alliance [39] with a portal architecture that can be applied to
both computing and education portals. We will initially use an architecture like Gateway (as
developed for computing case) but maybe emerging approaches like Ninja [40] and e-Speak [11]
will prove more powerful and these need to be evaluated. We also see some analogies between
the requirements for a learning environment and the successful but controversial Gnutella [26] or
Napster type [38] distributed archive technology for multimedia material.

18

We have developed – largely working with Jackson State University and the DoD PET program
[4] -- a model for distance education shown in fig. 17. We will apply the new system both to an
existing network of historically black colleges and universities to Florida State’s major
institutional effort in distance and distributed learning [23]. Fig. 17 shows our proposed
collaborative network of universities designing and developing shared courseware placed in a
repository managed by a modern distributed object system.[10,37] We expect that each network
member would integrate the shared courseware repository into separate learning instances. These
are particular course programs leading to degrees meeting the special needs of their learners and
other stakeholders. Mentors and teachers who may or may not be part of the degree-granting
university support this delivery as necessary. Our education portal must support the mix of
academic and commercial capabilities needed to enable such a learning paradigm. Several
approaches to web-based (distance) education have been developed and applied with some
success. [12] These include the largely asynchronous database linked commercial Blackboard
system being deployed by FSU and the synchronous collaboration based courses delivered over
the last 3 years between Syracuse (Fox) JSU and other HBCUs [4,5,15,16,41]. Looking to the
future, distance education will be a key part of the efforts to increase the efficiency of higher
education and to adapt curricula to the changing demands of modern society.

There are many possible models for web-based education but we suggest that there are no clear
“winners”, for today institutional legacies and immature technology warp what we see.
Synchronous instruction comes with an ongoing high price tag that cannot be reduced due to the
human factor (faculty) and his/her limited availability in time. Asynchronous education has a
higher up front cost, which is a challenge for rapidly varying curriculum in an environment
where authoring technology is still changing rapidly. We see the needs for unified systems
supporting different interactivity models and further that this choice will be customizable to the
individual learner. We anticipate that five years from now the seeming oxymoron of providing
individualized education in the mass production learning environment of a virtual university

Fig. 17: Collaborative University and Education
Delivery Model

19

should become reality. We propose a collaborative portal that will support these key
characteristics of unification of interaction paradigms and the customizability for each learner.
This framework must inevitably support a variety of tools coming from a mix of academic and
commercial sources.

Our application of this to distance education is detailed in later in figures and the backend
support in our approach includes the courseware as well as the events (information nuggets)
describing the users and their interactive sessions. Our proposed system will support the
courseware developer who is adding or editing modules as well as the learners and teachers
accessing the courseware repository. In addition it will provide tools to support person to person
and person to database interactions. Existing standards efforts (IMS, ADL, IEEE LTSC) are
described in section 6.2 have provided a good start to the portalML/resourceML interfaces
although the current standards are based on a less sophisticated client server model and
essentially merge our two interfaces. In sections 6.3 and 6.4, we elaborate our technical approach
built around the concept of a collaborative portal.

6.2 Standards and Learning Objects

There are several important (inter)national activities which have made recent progress in
defining standards for properties of learning objects. [10] One standard is the Instructional
Management Systems (IMS) Learning Object Metadata (LOM)[31], which is based on the IEEE
Learning Technology Standards Committee (LTSC) Learning Object Meta-database [30]. The
second standard, a Sharable Courseware Object Reference Model (SCORM)[1], was developed
in collaboration with IMS and IEEE LTSC by the Advanced Distributed Learning Initiative
(ADL) for the US Department of Defense. Both standardization efforts have built upon previous
efforts, resulting in current standards that support a richer set of educational resources than their
predecessors. Furthermore several other general standardization efforts, such as the Resources
Description Framework Model and Syntax Specification [34] and the Synchronized Multimedia
Integration Language [28], from the World Wide Web Consortium are not directed specifically
at educational materials but will be important for our education portals.

IEEE LTSC [30] defines learning object metadata including the specification of properties such
as technical and educational properties (such as format and interactivity), meta-metadata,
(ownership) rights, relationships (between objects), annotation and classification. IMS [31] has
built on this basic metadata, Enterprise properties (such as personal data for students) and a
general framework for content re-usability[32].

The ADL SCORM standard is intended to produce "web-available, sharable courseware objects
that are reusable in the development of technology-based instruction, portable across different
platforms, accessible through the use of metadata standards for identifying and locating them,
and durable across different versions of operating systems, browsers, and other supporting
software[1]". The ADL Initiative hopes to provide a starting point for the next generation of
advanced learning technologies that can be highly adaptive to student needs. The resulting
specifications include a Course Structure Format (CSF), that is an XML-based representation of
a course that can be used to describe all course elements, structure and external references
necessary to move a course from one learning management system (LMS) to another. Also, they
specify a run time environment that includes the specific launch protocol to initiate web-based

20

content, a common content-to-LMS application program interface, and a data model defining the
data, which can be exchanged between a learning management system and executable content at
run-time. The standard includes metadata for describing the course content, content metadata
(which incorporates the IMS Learning Object Metadata core elements) and raw media metadata.
Central to SCORM is the concept that courses can be broken up into blocks (collections),
objectives, and assignable units (au) that could be combined under the control of an intelligent
learning management system. Course completion requirements and pre-requisites are included.
The concept of a collection and the flexible assembly of other collections and au’s into a new
collection is clearly important for building courses from re-useable modules. Within SCORM,
assignable units are key building blocks in the overall scheme to track a student's progression
through a course. The assignable units contain content and implement the application interface
that provides the student progression information needed to customize learning management
system’s responses to individual students. We think that SCORM and IMS should be tightly tied
to the important W3C document object model [49], which seems to define a richer hierarchical
object model than SCORM. One must support both base educational objects (modules) and their
integration into lectures, courses, curriculum etc. We did this with our early WebWisdom system
[18,19] and an attractive interface for this can be seen in commercial software such as
RealJukebox [43], which is designed to collect multimedia objects, which are simpler but have
interesting points in common with learning objects. This software also supports neat layout
customization through different “skins”.

In our approach, the application interface of SCORM is encompassed in the client side “user
view” interface as shown in fig. 3. Most of IMS and SCORM address what we call resourceML
for education objects but this needs more careful study. Note that we intend to support more
collaborative flexible learning models than just computer based tutoring on which SCORM tends
to focus. Further IEEE LTSC, IMS and SCORM need to be tested in commercial systems such as
Blackboard[6], LearningSpace[36] and WebCT[50]. It will be important to follow what the
major commercial portals like Digitalthink adopt [9].

6.3 Collaborative Portals

A web-based virtual university approach implies that collaboration is a service that provides the
sharing of web-based distributed objects. [17] Previous systems have tended to support either
synchronous or asynchronous collaboration modes, but as explained in sec. 6.1 we believe they
must be unified. Initial synchronous deliveries have had some success using systems like
Microsoft NetMeeting, NCSA’s Habanero [27], and Syracuse’s TangoInteractive [47]. However
the new requirements imply we will build collaboration in terms of the event service of our
portal framework. We will allow this to support either synchronous delivery or event archiving
and later delivery of a session. Session control for the collaboration service will be implemented
in XML using the generalized portalML described above. We have found that developing shared
(collaborative) animations (for education) is too difficult in current systems like
TangoInteractive, which only support complex collaboration-aware applications without
difficulties. We will use VNC [48] or an equivalent technology to allow both shared display and
collaboration-unaware applications, which are less flexible but much easier to author. The
unification of synchronous and asynchronous collaboration is achieved using a powerful event
service described below.

21

As stated above, collaboration corresponds to the sharing of objects with changes induced by one
client, transmitted in some fashion to other clients. These changes are “events” and the
transmittal corresponds to sending messages between clients with perhaps some sort of server
intervention to route and archive events.

Fig. 18: Collaborative Portal Architecture

As shown in fig. 18 above, events can be recognized on the browser (possibly in a handheld or
other non PC client) and these need to be translated into a corresponding state change in the
controlling server or XML page. This appears to be non-trivial and the importance of being able
to link events between child and parent objects is important and should be a part of emerging
W3C web document object and event standards. These events could be as trivial as a page scroll
or a mouse movement; they could be a new parameter value in a form or a requested change in
page URL. We can even include audio-video multi-media streams in this approach with events
formed as perhaps a few hundreds of milliseconds of audio and video nuggets. The event model
could include server events (“your job aborted”, “remember class begins in 5 minutes”) and a
robust federated (between all participating clients and servers) event service underlies
collaboration.

22

Fig. 19: Event Streams from Client to Archive

The event stream specifying the collaborative object state changes, becomes set of time stamped
XML messages which we suggest should be queued and archived as in fig. 19 before dispatching
to linked clients. This approach allows each client to choose between synchronous and
asynchronous modes. The queued event can be delivered immediately or accessed later if so
desired. This allows the system to support both real-time and “pager” modes of collaboration. As
you file out of your airplane, you can rejoin your collaborative session – replaying missed events
first with style sheets to format them for your handheld client and then when you reach home,
you can examine the session in detail – either from the archive or join the active session
synchronously. As demonstrated by Beca from Syracuse University, one can use attributes in
“portalML” to specify the collaborative structure of each object in your portal.[21] This would
specify both the allowed options – which collaborative modes are supported by the system – and
the customized choice of each user.

Fig. 20: Distributed Event Subsystem

23

In our design of a collaborative portal, we add an appropriate robust event service as in fig. 20 to
one or more existing portal technologies such as Gateway or Ninja.

We intend to store events in a distributed database shown in fig. 21 with appropriate caching to
support high performance. [42]

6.4 Architecture and Services of Education and Training Portals

An education portal employs a modern distributed object framework and uses it to support
distributed learning objects and services with the two interfaces defined above. As discussed in
sec. 3, we adopt a layered approach with one set of capabilities common to all portals and then
specialize to different applications – in this case education and training.

The general properties of any portal include storing, accessing and searching for distributed
objects (which of course include web pages) in a repository. Further we have general services
such as security and collaboration. The latter described in sec. 6.3, is particularly important for
education as it enables the synchronous or asynchronous interactions between students and
teachers. Further general portal capabilities, some of which are described in sec. 3, include layout
(of the rendered objects on a page), provision of metadata, universal access, user customization
and performance (through use of mirror or proxy servers). We will define the object properties of

Fig. 21: Collaborative Portal showing support for multiple user interfaces and
the event queue shared synchronously as well as being stored for asynchronous
access

24

relevance to these functions and as for the case of collaboration and layout already described,
express them in terms of XML as portalML.

In the special case of education portals, one must support special services such as assessment,
performance (grading) support, and annotation. There are also distinctive “educational objects”
– quizzes, homework, glossaries as well as the curriculum pages with appropriate hierarchical
structure. Some of the key object properties here have been defined by SCORM and IMS. Our
distributed object based system will have to support curriculum material built in any web
authoring system and specified either statically or dynamically (from a database). This simple
request turns into a serious challenge, as it requires the unification of services such as those for
customization, collaboration, and events. This is a key research area as such unified services are
essential for the basic strategy of allowing components from multiple academic and commercial
sources. A simpler version of this challenge is well-defined XML interfaces to allow
interoperability of data streams. We have already described our federated event service in sec.
6.3.

We will assume that new browsers (Internet Explorer 5 and Netscape 6) will have satisfactory
support for the W3C document object model and XML. This already provides a nice way of
specifying collections that is consistent with ADL’s SCORM. We will build some simple layout
tools supporting a portalML allowing natural grid and flow layouts (using a Java AWT notation).
The event log of our federated event service can also be used in assessment of both the student
and the learning material as it records the user’s interactions with the environment. As discussed
in the Syracuse theses of Lee [35] and Sen [45], this can be done server side when it reduces to
the classic analysis of Web Server accesses logs. More interesting is the tracking of client side
events where the challenge is basically datamining user relevant information. We will on one
hand build in support for this as part of our event service and research extensions of the simple
analyses in the two theses to automatically derive user profile and learning assessment
information. This client side event information can be used to support universal access as
described by Fox and Gilman from the Wisconsin Trace center [20].

We are already building examples of the architecture shown in fig. 21, with an event service,
which is designed to support the performance of immediate forwarding of object state changes
that is needed by synchronous collaboration. [21,22] This is combined with the archiving of
events to support later asynchronous browsing of the course by users accessing the persistent
database. We ran into difficulties with TangoInteractive due to its extensive use of browser-
based software. In this approach we will avoid putting significant client side logic into a browser
but rather use a “personal server” shown in figs. 20 and 21. Here we view the browser (on a PC
or hand-held device) as one particular rendering device – it contains the code to support
rendering but the session logic and important data is controlled client side by a server. This
approach allows a single user session logic to support multiple display devices including cross
disability access such as a pure audio rendering for the visually impaired.

One continual area of challenge is the variable quality in digital audio and video conferencing.
Higher speed in networking and improving quality of service will address some of the
difficulties. We will track the ANL/NCSA Access Grid project [3] at the high end, but for many
educational uses commercial systems like RealAudio/Video can be used. In our multi-paradigm
framework, we will allow the user to switch dynamically between interactive audio-video
technology and the more reliable non real time systems (like RealAudio) whose larger buffer

25

sizes are less sensitive to the lack of quality of service on today’s internet. We have noted in our
classes between JSU and Syracuse that we could use the more robust approach when the teacher
is lecturing and interacting with the class through the chat rooms rather than the audio channel.
This accounts for well over 95% of the time of a typical lecture.

References

1) ADL SCORM: Sharable Courseware Object Reference Model, http://www.adlnet.org/ADL-
TWG/documents.htm

2) Erol Akarsu, Geoffrey Fox, Tomasz Haupt, Alexey, Kalinichenko, Kang-Seok Kim, Praveen
Sheethaalnath, and Choon-Han Youn, Using Gateway System to Provide a Desktop Access to
High Performance Computational Resources, Proceedings of HPDC-8 Conference, Redondo
Beach Ca., Aug 3-6, 1999, IEEE Press. http://www.osc.edu/~kenf/theGateway/ and
http://www.npac.syr.edu/users/haupt/WebFlow/

3) Argonne National Laboratory NCSA Alliance Access Grid Digital Conferencing System,
http://www-fp.mcs.anl.gov/fl/accessgrid/default.htm

4) Bernholdt, D. E., Fox, G. C., Malluhi, Q., Markowski, R., McCracken, N., Mitra, D.,
Podgorny, M., Scavo, T., Synchronous Learning at a Distance: Experiences with Tango,
Proceeedings of SC98 Orlando, IEEE.
http://www.npac.syr.edu/projects/training/Papers/sc98/

5) Bernholdt, D. E., Fox, G. C., McCracken, N., Podgorny, M., Network-Based Remote
Collaboration and Training: Progress and Plans, Internal technical report
http://www.npac.syr.edu/Projects/DoD/white-paper-collab-train-990510.html

6) Blackboard Inc is a major provider of education technologies. http://www.blackboard.com/

7) Jon Bosak and Tim Bray, XML and the Second-Generation Web, Scientific American May
99, http://www.sciam.com/1999/0599issue/0599bosak.html

8) NCSA Alliance / Java Grande Computing Portals Forum http://www.computingportals.org.

9) Digitalthink.com is a typical commercial computer science training site:
http://www.digitalthink.com

10) Educational Object Economy http://www.eoe.org

11) E-Speak project at Hewlett-Packard, http://www.e-speak.hp.com/

12) Figueroa, L., Understanding Students’ Approaches to Learning in University Traditional and
Distance Education Courses. Ann Yakimovicz, ed. Distance Learning Research Conference
Proceedings, San Antonio, TX . Texas A&M University, College Station, TX, April 1994.

13) Fox, G. C., and Furmanski, W. "High Performance Commodity Computing," chapter in “The
Grid: Blueprint for a New Computing Infrastructure”, C. Kesselman and I. Foster, editors,
Morgan Kaufmann, 1998

26

14) Fox, G. C. and Hurst, K., Computational Science and Information Technology meets GEM, a
chapter in AGU monograph on Physics of Earthquakes, edited by John Rundle and published
by AGU in 2000.

15) Fox, G. C., Internetics: Technologies, Applications and Academic Fields Invited Chapter in
Book :Feynman and Computation", edited by A.J.G. Hey, Perseus Books (1999),
http://www.npac.syr.edu/users/gcf/internetics/)

16) Fox, G. C., From Computational Science to Internetics: Integration of Science with
Computer Science, Chapter in a book dedicated to John Rice of Purdue (to be published).
http://www.npac.syr.edu/users/gcf/internetics2/

17) Fox, G. C., Internal memo on Collaborative Educational Objects,
http://www.npac.syr.edu/users/gcf/webwisdomrefs/npacwwdocs.html

18) WebWisdom: Simple Perl System developed by Fox supporting dynamic collections of foils
and web pages http://www.npac.syr.edu/users/gcf/byarea0.html

19) Fox, G. C. Architecture of Web-Based Training and Education System, SC97 CDROM and
http://www.supercomp.org/sc97/proceedings/EDU/FOX/INDEX.HTM

20) Fox, G. C., Initial discussion of use of XML for Universal Access, Shared Places on the
Web: XML for Web-based collaboration and Distance Education, XML Developers
Conference http://www.gca.org/conf/xmldev99/ Montreal August 19-20 1999,
http://www.npac.syr.edu/users/gcf/montrealxmlaug99

21) Fox, G. C., Initial Description of CPW (Collaborative Portal on the Web) -
http://www.npac.syr.edu/users/gcf/offbeatxmloct99/

22) Fox, G. C. Portals and Frameworks for Web Based Education and Computational Science,
Proceedings of the Second International Conference on the Practical Application of Java,
Editor Omer Rana, Manchester England April 12-14 2000 http://www.practical-
applications.co.uk/PAJAVA2000/index.html and http://www.new-
npac.org/users/fox/documents/pajavaapril00/

23) FSU ODDL Workshop on Symbolic Notations on the Web, October 8, 1999, Tallahassee,
http://cologne.oddl.fsu.edu/~pdragovitsch/WS/.

24) Globus Metacomputing Toolkit, home page: http://www.globus.org

25) Grid Forum Home Page http://www.gridforum.org

26) Gnutella: Counter Culture distributed information system http://gnutella.nerdherd.net

27) Habanero Home Page at NCSA - http://havefun.ncsa.uiuc.edu/habanero/

28) Hoschka, P., Synchronized Multimedia Integration Language (SMIL) 1.0 Specification,
http://www.w3.org/TR/REC-smil.

29) E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin, P. Papachiou, K. Y. Wang, and M.
Gaitatzes. PELLPACK: A Problem Solving Environment for PDE Based Applications on
Multicomputer Platforms. ACM Transaction on Mathematical Software, 24:30-73, 1998. See
http://www.cs.purdue.edu/research/cse/pdelab/pdelab.html

27

30) IEEE Learning Technology Standards Committee (LTSC), http://ltsc.ieee.org/

31) IMS (Instructional Management System) Project from Educause, http://www.imsproject.org/

32) IMS Content Packaging Information Model,
http://www.imsproject.org/content/cpinfo01.html

33) iPlanet e-commerce software from Sun Microsystems, http://www.sun.com/software/iplanet/

34) Lassila, O. and Swick, R. R., Resource Description Framework Model and Syntax
Specification http://www.w3.org/TR/REC-rdf-syntax

35) Lee, M., Information Architecture of Interactive and Customizable Learning Environments,
Syracuse Ph.D. 2000, advisor G. Fox.

36) Lotus(IBM) LearningSpace http://www.learningspace.com

37) MERLOT, California Virtual Campus Learning Object Libraries
http://www.rh.cc.ca.us/projects/cvu/learning_objects.htm

38) Napster MP3 Distributed shared file system http://www.napster.com

39) National Alliance for Computational Science http://www.ncsa.uiuc.edu

40) Ninja project at University of Berkeley, http://ninja.cs.berkeley.edu/

41) NPAC Distance Education Technology and Classes at Graduate and Undergraduate level,
http://www.npac.syr.edu/Education/Distance/

42) Shrideep Pallickara, Private Communication

43) RealNetworks provider of Internet Multimedia Technology and “Portals to such material”
http://www.realnetworks.com

44) Roussev, V., A Reference Architecture for Distributed Collaborative Applications, technical
report from Univ. North Carolina Collaboration Bus Project, 1999
http://www.cs.unc.edu/~dewan/cb.html

45) Sen, M., Support of Assessment in a Web-based Database Environment, Syracuse Ph.D.
2000, advisor G. Fox.

46) Simple Object Access Protocol http://www.develop.com/soap/

47) Tango Interactive Collaboration System home page http://www.npac.syr.edu/tango

48) VNC or Virtual Network Computing at http://www.uk.research.att.com/vnc/.

49) W3C Document Object Model http://www.w3.org/DOM/

50) WebCT: Major commercial web-based course authoring system: http://www.webct.com/

51) R. D. Williams, Caltech http://www.cacr.caltech.edu/SDA/xsil/index.html

